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 20 
Abstract: 21 
Spatially compound extremes pose substantial threats to globally interconnected social-22 
economic systems. We use an Earth system model large ensemble to examine the future 23 
risk of compound droughts during the boreal summer over ten global regions with highly 24 
seasonal climate. Relative to the late-20th century, the probability, mean extent and severity 25 
of compound droughts increase by ~60%, ~10% and ~20% respectively by the late-21st 26 
century, with a disproportionate increase in risk across North America and the Amazon. 27 
These changes result in a ~9-fold increase in exposure over agricultural areas and ~5 to 20-28 
fold increase in population exposure depending on the shared socioeconomic pathway. 29 
ENSO is the predominant large-scale driver of compound droughts with 68% of historical 30 
events occurring during El Niño or La Niña conditions. ENSO teleconnections remain 31 
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stationary in the future though an ~22% increase in ENSO extremes combined with 32 
projected warming, drive the elevated risk of compound droughts. 33 
 34 
 35 

Spatially and/or temporally compounding Earth system extremes can lead to cascading impacts 36 
on global socio-economic systems1–6. Several recent studies have examined temporally 37 
compounding events resulting from different combinations of climatic hazards occurring in the 38 
same location at the same time, such as hot and dry conditions7,8 or heavy precipitation and 39 
extreme winds9. The simultaneous occurrence of extremes across multiple regions, referred to as 40 
spatially compound extremes, have received relatively limited attention. Spatially compound 41 
extremes have the potential to accumulate hazard impacts in distant locations and  pose 42 
amplifying pressures on a network of interconnected socioeconomic systems1,10–15. For example, 43 
severe droughts that concurrently occurred across Asia, Brazil, and Africa during 1876 to 1878 44 
led to synchronous crop failures, followed by famines that killed more than 50 million people in 45 
those regions16. The complex and interconnected nature of the current global food network 46 
makes agricultural shocks, even over a few individual regions, capable of having ripple effects 47 
on global food prices and food security, particularly in socioeconomically vulnerable regions11,17. 48 
Compound extremes can also influence global economies through their impacts on international 49 
agribusiness and reinsurance industries7,18,19. Therefore, understanding the drivers of 50 
simultaneous extremes across regions and the exposure of human systems to such extremes can 51 
inform assessments of the climate risks to interconnected systems and planning for their societal 52 
impacts.  53 
Recent studies have examined the risk of crop failures from compound extremes and highlighted 54 
various physical drivers and mechanisms. The risk of multiple-breadbasket failures is elevated 55 
during the simultaneous physical hazards imposed by the large-scale natural climate variability 56 
modes such as El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole, and Atlantic 57 
Niño12,13,20. ENSO is one of the predominant drivers of hydroclimate variability across tropical 58 
regions, as El Niño events are associated with several major synchronous historical droughts 59 
across Asia, Africa and South America16,21. For instance, the strong El Niño event in 1983 60 
caused extreme heatwaves and droughts across multiple maize-producing regions that resulted in 61 
the most extensive simultaneous crop failures in recent records13,17. Overall, ~80% of historical 62 
compound droughts over tropical/subtropical belt are associated with El Niño conditions during 63 
the boreal summer20. Projected anthropogenic warming is expected to double the risk of 64 
concurrent hot and dry extremes over certain croplands and pastures7 and enhance the risk of 65 
globally synchronized shocks on temperature-sensitive crops such as Maize15, highlighting the 66 
importance of understanding the drivers of compounding stressors.  67 

This study aims to understand future changes in the characteristics and drivers of spatially 68 
compounding droughts (hereafter compound droughts) that could result in simultaneous shocks 69 
across multiple regions, highlighting the increasing risks to a suite of climate-sensitive sectors 70 
and systems. Our analysis focuses on ten tropical and subtropical regions, defined in the 71 
Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of 72 
Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), that exhibit high 73 
variability in summer precipitation and receive a large fraction of their annual precipitation 74 
during their summer season. Several of these regions exhibit similar socioeconomic and climate 75 
characteristics, including areas where rainy seasons and agricultural production are strongly 76 



influenced by the global monsoon systems. These regions also include important breadbaskets 77 
and vulnerable populations that depend on rainfed agriculture for their livelihood22,23. Given the 78 
importance of ENSO for hydroclimate variability over many of these regions13,16,24–27, we 79 
investigate the influence of El Niño and La Niña events on compound drought characteristics in 80 
the historical and future climates. We also quantify changes in the population and agricultural 81 
land exposure to compound droughts to understand societal implications of projected changes.   82 

 83 
Historical and future characteristics of compound droughts. We find significant increases in 84 
the frequency, spatial extent, and average intensity of compound droughts in the late-21st century 85 
(2071–2100) relative to the late 20th century (1971-2000) in the Community Earth System Model 86 
Large Ensemble simulations for the high-emissions Representative Concentration Pathway 8.5 87 
(Figure 1). The number of regions simultaneously under drought is significantly (p-value<0.05) 88 
higher in the future relative to the historical climate (Figure 1b), contributing to a ~60% increase 89 
in the probability of compound droughts (historical probability = 0.32 and future probability = 90 
0.51). The fraction of drought-affected area during compound droughts is also significantly 91 
higher in the future climate, with the probability of widespread compound droughts increasing by 92 
~30% relative to the historical climate (Figure 1c). Likewise, the mean severity of compound 93 
droughts also increases (Figure 1d) along with the probability of severe compound droughts, 94 
which increases ~6-fold from 0.12 in the historical climate to 0.75 in the future climate. As a 95 
result, nearly 3 out of 4 compound droughts in the future are classified as severe (Figure 1d).  96 
We quantify the impacts of more frequent, extensive and severe compound droughts on 97 
agricultural land (the combination of cropland and pastureland) and population by calculating 98 
changes in their exposures to compound droughts (Figure 2). These exposures exhibit distinct 99 
differences between the two climates and are sensitive to drought severity. While agriculture 100 
areas exposed to moderate compound droughts in the historical climate is twice as high as in the 101 
future climate (Figure 2a), their exposure to severe compound droughts increases ~10-fold in the 102 
future climate. An average of ~0.7 million km2 of agricultural land is likely to be exposed to 103 
severe compound droughts every year in the future climate compared to ~0.07 million km2 in the 104 
historical climate (Figure 2a). Since the agricultural area does not change in the two analyses 105 
periods, the differences in exposure is largely driven by changes in the frequencies and extent of 106 
moderate and severe compound drought in the two time periods.  107 
Increases in the severity of compound droughts in future climate is associated with changes in 108 
the characteristics of the water cycle. Specifically, several regions either exhibit a decrease in 109 
precipitation (CNA, CAM, and northern AMZ), or an increase in ET (northern CAM and ENA), 110 
both of which enhance surface drying (Figure S1c,d) and elevate the risk of compound droughts 111 
(Figure S2a). As a result, there is an increase in the likelihood of severe compound droughts 112 
exposure to agricultural lands within these regions (Figure 3a,b; Figure S2a,b). Alternatively, the 113 
decrease in agricultural exposure to moderate compound droughts over the EAS, SAS and EAF 114 
regions is due to an increase in summer precipitation in the future climate (Figure S1; Figure 3b). 115 
As a result, these regions are less likely to experience compound droughts in the future climate 116 
(Figure 3a). Although a reduction in agricultural exposure to compound droughts is projected 117 
over EAF, there is a considerable uncertainty in the response of EAF precipitation to warming28.  118 
Differences in the distribution and growth of population in the five Shared Socioeconomic 119 
Pathways (SSPs) lead to substantially varying population exposures to compound droughts 120 



(Figure 2b). Future population exposure to severe (moderate) compound droughts increases 121 
(declines) under all SSPs (Figure 2b). In the historical climate, an average of ~10 million people 122 
are at risk of experiencing severe compound droughts every year, which increases to an average 123 
of ~120 million people under SSP1 and SSP5, ~160 million under SSP2 and SSP4, and more 124 
than 210 million people under SSP3 every year by the late 21st century (Figure 2b). The 125 
exceptionally large increase in population exposure to severe compound droughts under SSP3 is 126 
primarily driven by a large increase in the frequency of severe compound droughts and in the 127 
population across all regions except SEA and EAS (Figure 3c; Figure S2c-f). Despite declines in 128 
compound droughts risk, the projected increase in population over EAF, WAF, and SAS 129 
contributes to increasing future population exposure29 (Figure 3a). 130 
Physical drivers of compound droughts. ENSO is the dominant mode of natural climate 131 
variability influencing compound droughts in the boreal summer season (Figure 4)16,20.  132 
Historically, ~68% of compound droughts are associated with significant ENSO events, of which 133 
El Niño conditions alone account for ~46% of compound droughts occurrences (Figure 4b). With 134 
the projected warming, ENSO events become more frequent, including a 30% increase in El 135 
Niño and 15% increase in La Niña conditions (Figure 4a). The more frequent occurrences of 136 
ENSO in the future warmer climate are consistent with previous studies30,31. In the future 137 
climate, ~75% of compound droughts are driven by ENSO variability, and the fraction of 138 
compound droughts associated with El Niño conditions increases to ~50% (Figure 4b). In total, 139 
compound droughts events associated with El Niño and La Niña conditions increase by ~70%, 140 
from 263 events in the historical climate to 448 in the future climate, in response to a ~22% 141 
future increase (from 712 to 869 events) in the frequency of ENSO events (Figure 4a, b).  The 142 
frequency of compound droughts associated with non-ENSO drivers also exhibit a moderate 143 
increase of ~25% (Figure 4b). The proportional occurrence of compound droughts during El 144 
Niño and La Niña conditions is similar in both time periods (i.e., association with El Niño is ~2 145 
(1.96) times more than La Niña in the historical (future) climate) (Figures 4b). Collectively, 146 
these characteristics of future changes not only manifest as a stronger role of ENSO in driving 147 
summer season compound droughts, but also suggest that ENSO teleconnections over the study 148 
regions remain largely stationary.    149 
The more prominent role of El Niño in driving spatially compound droughts is due to its negative 150 
correlation with precipitation variability over most of the studied regions.  El Niño conditions 151 
lead to intense and widespread drying over CAM, AMZ, WAF, EAF, EAS, southern SAS, and 152 
SEA in the historical climate (Figure S3a). In contrast, La Niña conditions lead to drying over 153 
relatively fewer studied regions, including CNA, ENA, southern WAF, and northern SEA 154 
(Figure S3c). El Niño-driven compound droughts also exhibit relatively larger mean drought 155 
extent compared to La Niña-driven compound droughts in both climates, and compared to non-156 
ENSO driven compound droughts in the historical climate (Figure 5a-c). While La Niña-driven 157 
compound droughts events exhibit higher intensity in the historical climate, more intense 158 
compound droughts are predominantly due to El Niño conditions in the late 21st century (Figure 159 
5c). In fact, El Niño-driven compound droughts not only have the highest mean severity in the 160 
future climate, but their extreme severity is also the highest among all the drivers (Figure 5c). 161 
These changes are consistent with relatively strong future climate drying during El Niño 162 
conditions (Figure S3). The composites of Standardized Precipitation Evapotranspiration Index 163 
(SPEI) during El Niño show an expansion of the drought area over AMZ and CAM, and an 164 
intensification of dry conditions over EAF and SEA in the future climate. Some intensification of 165 



drying is also present during La Niña (non-ENSO) conditions over ENA, WAF and AMZ (CAM 166 
and AMZ) in the future climate (Figure S3c-f). 167 

 168 
ENSO Teleconnections. We investigate changes in the influence of ENSO over the study 169 
regions by examining its teleconnections with SPEI (Figure 6) and precipitation anomalies across 170 
the study regions (Figure S4). The magnitude and pattern of correlations between the summer 171 
ENSO index and the SPEI/precipitation is very similar in both time periods, which highlights the 172 
fact that the ENSO teleconnections over most regions remain largely stable with the exception of 173 
ENA, WAF and EAF where correlations are stronger in the future climate (Figure 6a-b,d, S4). 174 
The area with a significant correlation between SPEI and ENSO over ENA increases from ~40% 175 
in the historical climate to ~70% in the climate (Figure 6c).  Moreover, the average correlation 176 
over WAF (EAF) increases to ~0.35 (~0.4) in future climate relative to ~0.25 (~0.35) in the 177 
historical climate (Figure 6d). Corresponding to the relative strengthening of ENSO 178 
teleconnections, the SPEI composite shows stronger dry conditions over western EAF during El 179 
Niño conditions and over southern WAF and eastern ENA during La Niña conditions in the 180 
future climate (Figure S5). Similarly, wet conditions also exhibit strengthening over southern 181 
WAF and eastern ENA during El Niño, and over eastern EAF during La Niña conditions (Figure 182 
S4). Broadly, the nature of ENSO teleconnections remain stationary in the future climate, which 183 
highlights the importance of understanding the current ENSO-compound droughts relationship 184 
and their related physical processes20.  185 

 186 
Discussion. Droughts are associated with a range of environmental, economic, and social 187 
impacts. Given the increasing global connectivity of socio-economic systems, understanding the 188 
historical characteristics of compound droughts and anticipating their changes in a future warmer 189 
climate is important for a broad suite of interconnected, climate-sensitive sectors7. The 190 
agricultural sector, in particular, is highly sensitive to simultaneous shocks across multiple 191 
regions because of the complex networks of food supply, demand and global trade6. The 192 
projected increase in agricultural exposure to compound droughts highlights the higher 193 
likelihood of simultaneous production shocks across multiple breadbaskets in the future period 194 
that could affect global food availability and security. Our results indicate that the North and 195 
South American regions, considered in this study, are more likely to experience compound 196 
droughts in a future warmer climate as compared to the regions in Asia and Africa, where much 197 
of the areas affected by monsoons are projected to become wetter32. The contribution of food 198 
produced within the Americas to the global food system could, therefore, be more susceptible to 199 
such climatic hazards. For instance, the United States is a major exporter of staple grains and 200 
currently exports maize (soyabean) to >160 (>90) countries across the globe11,33. Therefore, a 201 
modest increase in the risk of compound droughts in the future climate can lead to regional 202 
supply shortfalls that could cascade into the global market, affecting global prices and 203 
amplifying food insecurity. Additionally, our results have broader implications for the global 204 
virtual water trade network involved in the water-intensive agricultural, forestry, industrial, and 205 
mining products34,35. In last three decades, international trade of virtual water has tripled35 and is 206 
expected to increase further in response to increases in population and demand by end of 21st 207 
century36. Therefore, the projected increases in the frequency and severity of compound droughts 208 
could disrupt the supply-demand network of such water intensive goods and thereby, can affect 209 
their availability and prices in global market.  210 



In addition to impacts on such connected systems, the interplay of projected growth in 211 
population and changes in compound drought characteristics will also exacerbate direct 212 
population exposure to drought impacts. The largest increase in population exposure to severe 213 
compound droughts is projected under SSP3, which represents a fragmented future world of 214 
resurgent nationalism, low-income growth, focus on domestic or regional issues, and high 215 
population growth in developing countries29. Persistent inequality and low economic growth 216 
under SSP3 indicate societies that are likely less resilient to severe compound droughts and 217 
consequently might experience higher socio-economic impacts. In contrast, the increase in 218 
population exposure to compound drought is lowest under SSP1. SSP1 represents a trajectory 219 
of sustainable development, lower inequality, high economic growth, higher investment in 220 
human capital and a focus on global commons29, which might be better prepared to manage the 221 
impacts of compound droughts. Irrespective of the scenario, a warming climate will amplify 222 
stresses on international agencies responsible for disaster relief by requiring the provision of 223 
humanitarian aid to a greater number of people simultaneously exposed to drought-related 224 
disasters. 225 
Efforts to better understand and constrain the hydroclimatic impacts of ENSO variability, 226 
however, can support predictability and management of compound drought impacts in a warmer 227 
climate. Our findings suggest that the regional teleconnections during El Nino or La Nina 228 
conditions do not change substantially, with increases mainly in the intensity of compound 229 
droughts in the future climate relative to historical climate. These results imply that when ENSO 230 
events occur, they will likely affect the same geographical regions albeit with greater severity. 231 
The occurrence of nearly 75% of compound droughts with ENSO events in the future climate 232 
highlights the potential for predictability of compound droughts and their impact at lead times of 233 
up to 9-months37. Timely predictions of compound droughts and their impacts on agricultural 234 
areas and communities can facilitate international agribusiness industries to minimize the 235 
economic losses and insurance and re-insurance industries to design effective insurance schemes 236 
to reduce losses from simultaneous disasters. 237 
 238 
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 322 
Methods 323 
Datasets. We use the 40-member Community Earth System Model Version-1 (CESM1) Large 324 
Ensemble Simulations (LENS) to examine the drivers of historical (1971-2000) compounding 325 
droughts and their projected changes (2071-2100) under the RCP8.5 scenario38. Each ensemble 326 
member of the CESM-LENS differs only in its initial atmospheric conditions and has identical 327 
external forcing, thereby providing an opportunity to investigate the influence of internal 328 
variability under different climate conditions. CESM demonstrates high skill in reproducing the 329 
observed global precipitation patterns, ENSO characteristics (e.g., intensity, frequency and 330 
related global teleconnections)30,31,39..  331 



We use observed monthly precipitation data for 1981–2019 from the Climate Hazards Group 332 
Infrared Precipitation with Stations (CHIRPS) version 240 to estimate the Shannon Entropy 333 
index41, which is used to identify the regions of high variability in the summer precipitation. 334 
CHIRPS combines satellite-based precipitation estimates with in-situ observations and models of 335 
terrain-based precipitation to provide spatially fine and continuous data40.  For the calculation of 336 
changes in population and agricultural land exposures, historical (for the year 2000) and 337 
projected future population (for the year 2100) at 1‐km spatial resolution42 < 338 
https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-km-downscaled-pop-base-year-339 
projection-ssp-2000-2100-rev01>, and crop and pastureland fraction (based on the year 2000) 340 
<https://sedac.ciesin.columbia.edu/data/set/aglands-pastures-2000> at 10-km spatial resolution43 341 
are obtained from the NASA Socioeconomic Data and Applications Center. We consider the 342 
population projections from all five Shared Socioeconomic Pathways (SSPs) to quantify the 343 
uncertainty in population exposure to compounding droughts under projected future warming.  344 
 345 
Selection of Regions. We quantify compound droughts across 10 SREX regions: Amazon 346 
(AMZ), Central America (CAM), Central North America (CNA), East Africa (EAF), East Asia 347 
(EAS), East North America (ENA), South Asia (SAS), Southeast Asia (SEA), Tibetan Plateau 348 
(TIB), and West Africa (WAF). We consider these regions for the following reasons: (1) many 349 
of these regions are connected by the global summer monsoon systems and influenced by similar 350 
large-scale modes of variability27, (2) these receive the largest fraction of annual precipitation 351 
during the summer season (June – September; JJAS)22,27 and exhibit strong variability in summer 352 
precipitation, and (3) these include several major breadbaskets and populations vulnerable to 353 
climate variability and change23.  354 
To identify the sub-regions that exhibit high variability in summer precipitation, we estimate the 355 
observed Shannon Entropy Index41 using monthly summer precipitation from the CHIRPS 356 
dataset. We only consider those regions that show high variability (entropy >4.86; median 357 
entropy values across the areas studied) in the monthly summer precipitation over at least 30% of 358 
their total area (Figure 1a). The Shannon Entropy H is estimated using the following equation44,  359 

 360 

    𝐻 =	−∑𝑝!𝑙𝑜𝑔" 𝑝!                                                                (1) 361 

 362 
where, p is the probability of each ith value of the time series. The areas within each region that 363 
satisfy the Shannon entropy criterion compare well between observations (CHIRPS) and 364 
simulations (CESM) (Figures 1a, S6). The only exception is over AMZ where the extent of 365 
simulated area with high variability is relatively smaller than observed (Figure S6). Furthermore, 366 
CESM exhibits skills in simulating the compound droughts characteristics across these regions 367 
that have been described in Singh et al20.  368 
 369 
Drought Characteristics. We use Standardized Precipitation Evapotranspiration Index (SPEI) 370 
to define drought45,46. SPEI is estimated using a simple climatic water balance, i.e., the difference 371 
between the accumulated summer season precipitation and evapotranspiration (ET)45. We 372 
compute ET as the sum of ground and canopy evaporation and transpiration for the present and 373 
future climates from CESM-LENS following the approach provided by Mankin et al47. To 374 



construct SPEI, we follow a procedure similar to the Standardized Precipitation Index 375 
calculations proposed by McKee et al48. We use a log-Logistic distribution to estimate the 376 
probability distribution of P-ET instead of the Gamma distribution45 that is used for SPI49. The 377 
gamma distribution requires a variable with non-negative values, which makes it inappropriate 378 
for SPEI estimation because the P-ET may yield negative values. Hence, we estimate the 379 
probability of P-ET based on the widely used two-parameter Log-logistic distribution and then 380 
transform it to a standard normal distribution to make it comparable across space and time45,46. 381 
Future (2071–2100) SPEI calculations use historical (1971–2000) climate characteristics to 382 
characterize changes in compound droughts relative to the historical climate.   383 

We use the threshold of -1s of the historical SPEI to classify a grid cell experiencing drought (<-384 
1s) in the historical and future climates. We define an individual drought over a region if the 385 
fractional area experiencing drought conditions (SPEI<-1s) exceeds the 80th percentile of the 386 
historical long-term average drought area. A compound droughts event is identified if at least 387 
three of the ten SREX regions concurrently experience drought. Compound drought area is 388 
defined as the fraction of the total area across the regions involved in compound droughts events. 389 
Similarly, the compound droughts intensity is computed as average SPEI over drought-affected 390 
areas across those regions. A compound drought event is classified as widespread when the 391 
drought-affected area exceeds the 90th percentile of the historical long-term average area affected 392 
by compound droughts (i.e. ~41%). Furthermore, these events are classified as severe (moderate) 393 
when average SPEI across all drought-affected areas is below (above) the 10th percentile (~-394 
1.65) of the historical long-term average SPEI over drought-affected areas during compound 395 
droughts. 396 
 397 
Crop, pasture lands and population exposure. There is a mismatch between the horizontal 398 
grid spacing of climate data and cropland, pastureland and population datasets. Moreover, the 399 
rate of population growth varies across space and depends on several local and global spatial 400 
interactions29. Therefore, it is not appropriate to use interpolation methods to upscale the 401 
population data to match ~1º CESM grid cells. Therefore, instead of remapping, we aggregate 402 
the population across the grid cells (at 1 km spatial resolution) that fall inside the ~1º CESM grid 403 
cells to calculate population exposure. We follow same procedure for crop and pasture lands. 404 
Given the importance of cropland for food cultivation and pastureland for animals grazing, we 405 
quantify the exposure of these land types to compound droughts. Cropland, pastureland and 406 
population exposures are calculated as follows: 407 

Cropland and pastureland exposure: #
$
∑ a%&
%'#                                          (1) 408 

 409 
where, N is number of years, i indicates years with compound droughts events, a indicates the 410 
total drought affected cropland or pastureland across the regions involved in the compound 411 
droughts. Cropland and pastureland is based on the year 2000 and is fixed for both present and 412 
future climates.  413 
 414 

Population exposure: #
$
∑ p%&
%'#                                                         (2) 415 

 416 



Where, N is number of years, i indicates years with compound drought, p indicates the number of 417 
people experiencing drought across the regions involved in the compound droughts. We consider 418 
historical population based on year 2000 and projected future population based on year 2100 419 
under all five SSPs. 420 

 421 
Large-scale Modes of Variability. We define the ENSO index using the average summer (June 422 
to September; JJAS) sea surface temperatures anomalies (SSTA) over the Niño3.4 region (5S-423 
5N, 170W-120W)50. We remove the forced climate change component from each member of the 424 
large ensemble by subtracting the time-varying mean of all ensemble members, as follows: 425 

𝑆𝑆𝑇𝐴!,) =	𝑆𝑆𝑇!,) − (
#
*+
∑ 𝑆𝑆𝑇)
)'*+
)'# )!                                             (3) 426 

 427 
where i represents the year and j represents the ensemble member. El Niño and La Niña are 428 
defined as exceedances of ±0.5s, where the standard deviation (s) is estimated using the 429 
historical ENSO index values (1971–2000)20.   430 
Statistical Significance of the changes in compound droughts. We employ the non-parametric 431 
permutation test to assess the statistical significance of the differences in mean compound 432 
droughts characteristics in the historical and future climates51. We first quantify the test statistic 433 
(i.e. difference in the means of the distributions of compound droughts characteristics) from the 434 
two original historical and future distributions and then estimate an empirical distribution of the 435 
test statistic by randomly permuting the samples from the two distributions and re-estimating the 436 
test statistic from the resampled distributions, 10,000 times. If the original test statistic is higher 437 
(lower) than the 95th (5th) percentile of the empirical distribution, we consider the mean of 438 
compound droughts characteristics between historical and future climates to be significantly 439 
different at the 5 percent significance level. 440 

Data availability  441 

All datasets used in the manuscript are publicly available and their sources are provided in the 442 
“Methods” section. 443 

Code availability 444 
The scripts developed to analyze these datasets can be made available on request from the 445 
corresponding author. 446 
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 541 
Figures 542 

 543 

Figure 1. Historical and future characteristics of compound droughts. (a) Map showing the 544 
10 SREX regions (red line) considered in this study. Red text indicates the fraction of each 545 
SREX region with high entropy values [entropy > 4.86, which is the median entropy value across 546 
10 SREX regions] (teal color) estimated from observed CHIRPS precipitation data (1981-2018) 547 
at 0.250 resolution. (b) The distribution of the number of regions under drought in historical 548 
(grey box) and future (red box) climate. Figures (c) and (d) show the distribution of drought area 549 
and intensity associated with compound droughts. Horizontal grey dashed lines indicate the 550 
thresholds used to define (b) compound (i.e., ≥ 3 regions under drought, gray line) drought, (c) 551 
widespread (i.e., events with >90th percentile of total area (~41%) across all 10 regions 552 
concurrently affected by drought), and (d) severe (i.e., average SPI across all drought affected 553 
areas < 10th percentile (~-1.65), gray line) compound drought. Text above the boxplots in panel 554 
(b) indicates the probability of compound droughts, (c) indicates the probability of experiencing 555 
widespread compound droughts and (d) indicates the probability of experiencing severe 556 
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compound droughts. Gray arrows at the bottom of the panels indicate significant differences (at 557 
5% significance level) in the future distribution of drought regions, drought area and intensity 558 
relative to the historical climate. Black dots show the mean of the distribution in each boxplot.  559 
 560 

 561 
Figure 2. Crop, pasture lands, and population exposure to compound droughts. (a) 562 
Agricultural area and (b) population exposure across the regions under compound droughts. X- 563 
and Y- axes indicate the average cropland/pastureland/agricultural land (combined cropland and 564 
pastureland) area and population per year exposed to compound droughts in the historical and 565 
future climate, respectively. A 45-degree solid line is used to compare exposure between 566 
historical and future climates at 1:1 in each panel.   567 
 568 
 569 

 570 
Figure 3. Contribution of regions to compound droughts and to agricultural area and 571 
population exposure to compound drought. (a) X- and Y- axes indicate the fraction of 572 
instances in which a particular region experiences drought during compound droughts in the 573 
historical and future climates, respectively. (b) Average agricultural land (total cropland and 574 
pastureland) (in %) exposure to compound droughts in historical and future climates. (c) Average 575 
number of people exposed to compound droughts in historical and future climates under SSP3.  576 
 577 

 578 

av
g_

cr
op

_f
ut

_l
ow

_i
nt

 *
 1

0^
-5

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

av
g_

po
p1

_f
ut

_l
ow

_i
nt

 *
 1

0^
-7

1 3 5 7 9 13 17 21

1
3

5
7

9
13

17
21

0       1       2       3       4        5       6       7

0 
   

  1
   

   
2 

   
   

3 
   

  4
   

   
5 

   
  6

   
   

 7

1 
   

   
  5

   
   

   
9 

   
   

 1
3 

   
   

17
   

   
 2

1

1          5           9         13        17         21
Affected area/year (*105, km2, hist)

Af
fe

ct
ed

 a
re

a/
ye

ar
 (*

10
5 , 

km
2 , 

Fu
t)

No of affected people/year (*107, Hist)

N
o 

of
 a

ffe
ct

ed
 p

eo
pl

e/
ye

ar
 (*

10
7 , 

Fu
t)

av
g_

po
p1

_f
ut

_l
ow

_i
nt

 *
 1

0^
-7

SSP1
SSP2
SSP3
SSP4
SSP5

SSP1

SSP2
SSP3

SSP4
SSP5

(a) (b)

Moderate compound drought Severe compound drought

Cropland

Agricultural land
(Crop+Pasture)+

Pastureland

Agricultural land  (Crop+Pasture)
exposure

av
g_

cr
op

_f
ut

_l
ow

_i
nt

[1
] *

 1
0^

-2

AMZ
CAM
CNA
EAF
EAS
ENA
SAS
SEA
TIB
WAF

AMZ
CAM
CNA
EAF
EAS
ENA
SAS
SEA
TIB
WAF

Moderate compound drought Severe compound drought

yg
ap

0 2 4 6 8 10 12 18

0
2

4
6

8
10

12
18

0      2      4       6      8      10    12    18
Affected area/year (%, Hist)

0 
   

  2
   

  4
   

   
6 

   
 8

   
  1

0 
  1

2 
  1

8

y/
60

4

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

No of droughts during comp 
droughts/total comp droughts (Hist)

N
o 

of
 d

ro
ug

ht
s d

ur
in

g 
co

m
p 

dr
ou

gh
ts

/to
ta

l c
om

p 
dr

ou
gh

ts
 (F

ut
)

0         0.2        0.4         0.6        0.8

0 
   

   
 0

.2
   

   
 0

.4
   

   
 0

.6
   

   
 0

.8

(a)
12            14             16             18

Population exposure (SSP3)

12
   

   
   

  1
4 

   
   

   
 1

6 
   

   
   

 1
8

Regional contribution to 
compound drought

lo
gy
[1
]

12 14 16 18

12
14

16
18

Af
fe

ct
ed

 a
re

a/
ye

ar
 (%

, F
ut

)

Lo
g 

(n
o 

of
 a

ffe
ct

ed
 p

eo
pl

e/
ye

ar
) (

Fu
t)

Log (no of affected people/year) (Hist)

(b) (c)



 579 
Figure 4. Changes in the frequency of ENSO events and compound droughts in future 580 
climate. (a) The probability distribution function (PDF) of the ENSO index. The text in the inset 581 
indicates the number of El Niño (ENSO > 0.5SD) and La Niña (ENSO < -0.5SD) events in the 582 
historical and future climate. (b) The count of compound droughts associated with El Niño 583 
events, La Niña events and non-ENSO drivers. The text on the x-axis indicates the total number 584 
of compound droughts in the historical and future climates. The text on top of each bar indicates 585 
the number of compound droughts that occur with the various physical drivers. 586 
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 587 
Figure 5. Influence of ENSO and non-ENSO drivers on compound drought characteristics. 588 
The distribution of (a) number of regions under drought, (b) drought area, and (c) drought 589 
intensity associated with compound droughts related to various physical drivers noted below 590 
each boxplot.  591 
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 594 
Figure 6. Changes in the ENSO teleconnections with SPEI over land in future climate. 595 
Correlation between ENSO and SPEI in the (a) historical and (b) future climate. (c) Changes in 596 
the area with significant (at 5% significance level) correlation between ENSO and SPEI across 597 
all regions in the future relative to the historical climate. (d) the changes in the strength of 598 
correlation (average absolute correlation coefficient) between ENSO and SPEI across all regions 599 
in the future relative to historical climate. 600 
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